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A novel, efficient, and very mild one-pot synthesis of methyl 2-[(Z)-4-aryl-5-morpholino-3-oxo-
2,3-dihydrothiophen-2-ylidene]acetate derivatives under kinetic control has been developed. The
title compounds were prepared by the reaction of thioacetomorpholides with dimethyl acetylene-
dicarboxylate (DMAD) in the presence of K2CO3 in a non-polar solvent with excellent yields.

Keywords: Substituted thienylidenes

1. Introduction

The ready availability of activated acetylenes allows their use in the synthesis, and permits the
study, of new types of organic sulfur compounds [1, 2]. Reactions of acetylene compounds
with sulfide anions are of great importance in the synthesis of the thiophenes [3, 4]. On the
other hand, sulfur compounds, and especially vinyl sulfides, form the basis of drugs, highly
active pesticides, and thermally stable and conductive materials [5, 6].

In connection with our work on thioamides, especially thioacetomorpholides, for the
construction of new heterocyclic compounds [7], we report here a very mild, efficient,
and one-pot synthesis of methyl 2-[(Z)-4-aryl-5-morpholino-3-oxo-2,3-dihydrothiophen-2-
ylidene]acetate derivatives, under kinetic control, from thioacetomorpholides, a process which,
to the best of our knowledge, has not yet been described.
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2. Result and discussion

The thioacetomorpholides were found to react smoothly with dimethyl acetylenedicarboxy-
late (DMAD) in the presence of K2CO3 in a non-polar solvent such as toluene to produce
methyl 2-[(Z)-4-aryl-5-morpholino-3-oxo-2,3-dihydrothiophen-2-ylidene]acetate derivatives
in good to excellent yields (82–94%) and in short reaction times (scheme 1). The reaction
was carried out on a 2 mmol scale, in anhydrous toluene, and at a temperature between 40
and 50 ◦C. The reaction proceeded in low yields at 0–20 ◦C, and higher temperatures led to a
complex mixture of unidentified coloured products.

SCHEME 1.

We investigated the effects of varying the solvent in this reaction, by using toluene,
dimethylformamide, and tetrahydrofuran. Table 1 summarizes the results for the three model
compounds tested.

Toluene was the best choice for this reaction; dimethylformamide and tetrahydrofuran were
also effective, but the reaction proceeded sluggishly with lower yields and the formation of
side products. In a typical procedure 1a was treated with 1.1 molar equivalents of DMAD in
toluene and the mixture was heated at 45 ◦C for 50 min to give the desired product 2a in 92%
isolated yield.

To demonstrate the generality of this methodology, different substrates were used and the
results are summarized in table 2.

We suggest that the thioamide first undergoes S-alkylation via a Michael addition to
DMAD, then subsequent enamine nucleophilic attack leading to cyclization and formation of
the methyl 2-[(Z)-4-aryl-5-morpholino-3-oxo-2,3-dihydrothiophen-2-ylidene]acetate deriva-
tives. It should be noted that, theoretically, the reaction could proceed via two different routes,
giving thiophenes A or 4H-thiopyran-4-one derivatives B (scheme 2). Since the two possible
structures A and B could not be distinguished by spectroscopic methods such as 1H- and

Table 1. Investigation of the effects of varying the
solvent on the reaction course.a

Yieldb (%)

Entry Time (min) DMF THF Toluene

2a 50 53 73 92
2e 60 58 78 90
2g 75 43 56 82

aReactions were carried using 2 mmol thioacetomorpholide,
2.1 mmol DMAD, and 0.522 g K2CO3 at 45 ◦C.
bIsolated yields.
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Table 2. Construction of methyl 2-[(Z)-4-aryl-5-morpholino-3-oxo-2,3-dihydrothiophene-
2-ylidene]acetate derivatives from thioacetomorpholides.

Entry Ar product of 2 Time (min) Mp (◦C) Yielda (%)

1 Ph 50 167–169 92
2 4-MeC6H4 60 191–193 94
3 4-BrC6H4 50 228–230 83
4 4-ClC6H4 65 232–234 85
5 4-MeOC6H4 60 168–170 90
6 4-PhC6H4 70 209–211 84
7 1-Naphthyl 75 208–210 82
8 2-Naphthyl 75 196–198 85

aYield refers to pure isolated products.

SCHEME 2.

13C-NMR, the decisive assignment was confirmed by an X-ray crystal-structure analysis of
the crystalline compound 2h (table 2, entry 8; figure 1).

Conclusions

In conclusion, we have developed a new, general, efficient, and versatile method for
the preparation of novel methyl 2-[(Z)-4-aryl-5-morpholino-3-oxo-2,3-dihydrothiophen-2-
ylidene]acetate derivatives. The usefulness of this methodology lies in the fact that the reactions
proceed under mild conditions and kinetic control, in a short time, and in excellent yields.
Furthermore this is a one-pot procedure using the starting materials, which are also available
by known procedures [8].

3. Experimental

All compounds gave satisfactory spectroscopic data.
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Figure 1. ORTEP [9] representation of the molecule 2h (50% probability ellipsoids; H-atoms given arbitrary
displacement parameters for clarity).

3.1 Crystal structure determination of compound 2h

Crystals of 2h were obtained from EtOH. All measurements were performed on a Nonius
KappaCCD area-detector diffractometer [10] using graphite-monochromated Mo-Kα radia-
tion (λ = 0.71073 Å) and an Oxford Cryosystems Cryostream 700 cooler. The data collection
and refinement parameters are given below and a view of the molecule is shown in figure 1.
Data reduction was performed with HKL Denzo and Scalepack [11]. The intensities were
corrected for Lorentz and polarization effects, and an absorption correction based on the
multi-scan method [12] was applied. The space-group was uniquely determined by the sys-
tematic absences. Equivalent reflections were merged. The structure was solved by direct
methods using SIR92 [13], which revealed the positions of all non-hydrogen atoms. The non-
hydrogen atoms were refined anisotropically. All of the H-atoms were placed in geometrically
calculated positions and refined using a riding model where each H-atom was assigned a fixed
isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for
the methyl group). The refinement of the structure was carried out on F 2 using full-matrix
least-squares procedures, which minimized the function �w(F 2

o − F 2
c )2. The largest peak of

residual electron density is within 1.0Å of the S-atom. All calculations were performed using
the SHELXL97 program [14].

3.1.1 Crystal data for 2h. C21H19NO4S, M = 381.44, orange prism, crystal dimen-
sions 0.10 × 0.25 × 0.25 mm, monoclinic, space-group P21/c, Z = 4, reflections for
cell determination 49 948, 2θ range for cell determination 4–60◦, a = 17.7576(4), b =
6.1996(1), c = 18.3061(4)Å, β = 113.753(1)◦, V = 1844.60(7) Å3, T = −113 ◦C, DX =
1.373 g cm−3, µ(Mo-Kα) = 0.203 mm−1, 2θ(max) = 60◦, transmission factors (min; max)
0.876; 0.982, total reflections measured 49 140, symmetry-independent reflections 5393,
reflections with I > 2σ(I) 4132, reflections used in refinement 5393, parameters refined
245; R(F) [I > 2σ(I) reflections] = 0.0489, wR(F 2) [all data] = 0.1328 (w = [σ 2(F 2

o ) +
(0.0601P)2 + 1.1135P]−1, where P = (F 2

o + 2F 2
c )/3), goodness of fit 1.035, final �max/σ

0.001, �ρ (max; min) = 1.01; −0.32 e Å−3. CCDC-275008 contains the supplementary
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crystallographic data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3.2 General procedure for the one-pot preparation of compounds 2a–2h

To a stirred solution of thioacetomorpholide (2 mmol) in toluene (5 ml) was added K2CO3

(4 mmol, 0.552 g).Then dimethyl acetylenedicarboxylate (DMAD, 2.1 mmol) was added drop-
wise over 10 minutes. The reaction mixture was heated at 40–50 ◦C for about 50 minutes. The
solvent was evaporated off and the residue was subjected to column chromatography (silica
gel; hexane:ethyl acetate, 1:1) to afford the corresponding products.

3.2.1 Spectroscopic data for compounds 2a–2h
2a: yellow crystals (EtOH), mp 167–169 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.42 (t, J =
7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 6.8 Hz, 2H), 6.97 (s, 1H), 3.89 (s, 3H),
3.73 (t, J = 4.5 Hz, 4H), 3.51 (t, J = 4.5 Hz, 4H); 13C-NMR (CDCl3; 125 MHz) δ 185.3,
170.2, 167.7, 146.8, 134.5, 130.5, 129.0, 127.8, 115.2, 108.9, 66.7, 52.7, 51.5; IR (KBr) ν

2485, 1700, 1645, 1315 (cm−1).

2b: orange crystals (EtOH), mp 191–193 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.23 (d, J =
7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.97 (s, 1H), 3.89 (s, 3H), 3.71 (t, J = 4.5 Hz, 4H),
3.52 (t, J = 4.5 Hz, 4H), 2.39 (s, 3H); 13C-NMR (CDCl3; 125 MHz) δ 185.6, 169.9, 167.3,
146.8, 137.6, 131.3, 130.3, 129.8, 115.1, 109.0, 66.8, 52.7, 51.5, 21.7; IR (KBr) ν 2853, 1692,
1647, 1545, 1315 (cm−1).

2c: orange crystals (EtOH), mp 228–230 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.54 (d, J =
8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 6.94 (s, 1H), 3.90 (s, 3H), 3.73 (t, J = 4.4 Hz,
4H), 3.57 (t, J = 4.4 Hz, 4H); 13C-NMR (CDCl3; 125 MHz) δ 184.9, 170.3, 167.5, 146.3,
133.3, 132.1, 121.8, 115.5, 107.6, 96.6, 66.6, 52.7, 51.6; IR (KBr) ν 2845, 1692, 1652, 1548,
1315 (cm−1).

2d: yellowish orange crystals (EtOH), mp 232–234 ◦C, 1H-NMR (CDCl3; 500 MHz) δ 7.39
(d, J = 7.8 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 6.94 (s, 1H), 3.90 (s, 3H), 3.73 (t, J = 4.7 Hz,
4H), 3.52 (t, J = 4.7 Hz, 4H); 13C-NMR (CDCl3; 125 MHz) δ 185.2, 170.5, 167.6, 146.4,
133,6, 132.9, 131.7, 129.2, 115.5, 107.6, 66.7, 52.8, 51.6; IR (KBr) ν 2853, 1654, 1546,
1315 (cm−1).

2e: orange crystals (EtOH), mp 168–170 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.19 (d, J =
8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.92 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.71 (t, J =
4.4 Hz, 4H), 3.52 (t, J = 4.4 Hz, 4H); 13C-NMR (CDCl3; 125 MHz) δ 185.2, 169.6, 167.3,
146.6, 132.2, 131.5, 126.4, 114.3, 108.5, 96.5, 66.6, 55.4, 52.5, 51.3; IR (KBr) ν 2945, 1692,
1646, 1545, 1315 (cm−1).

2f: orange crystals (EtOH), mp 209–211 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.65 (d, J =
7.8 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.36–7.39 (m, 3H), 6.97
(s, 1H), 3.91 (s, 3H), 3.74 (t, J = 4.1 Hz, 4H), 3.57 (t, J = 4.1 Hz, 4H); 13C-NMR (CDCl3;
125 MHz) δ 185.3, 170.2, 167.6, 146.7, 141.0, 140.5, 133.4, 130.8, 129.2, 127.8, 127.6, 115.4,
108.5, 96.6, 66.5, 52.6, 51.6; IR (KBr) ν 2915, 1692, 1654, 1545, 1315 (cm−1).

2g: yellowish orange crystals (EtOH), mp 208–210 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.88
(d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.69–7.71 (m, 1H), 7.55 (d, J = 7.3 Hz, 1H),
7.50–7.53 (m, 2H), 7.41 (d, J = 6.6 Hz, 1H), 6.97 (s, 1H), 3.92 (s, 3H), 3.41–3.54 (m, 8H);
13C-NMR (CDCl3; 125 MHz) δ 185.2, 169.8, 167.6, 146.6, 134.3, 132.8, 129.3, 129.0, 128.8,
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126.8, 126.5, 126.1, 125.9, 115.4, 106.7, 96.6, 66.7, 52.6, 51.0; IR (KBr) ν 2853, 1692, 1653,
1545, 1315 (cm−1).

2h: orange crystals (EtOH), mp 196–198 ◦C; 1H-NMR (CDCl3; 500 MHz) δ 7.85–7.88 (m,
3H), 7.81 (s, 1H), 7.50–7.51 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H), 6.98 (s, 1H), 3.91 (s, 3H), 3.70
(t, J = 4.4 Hz, 4H), 3.52 (t, J = 4.4 Hz, 4H); 13C-NMR (CDCl3; 125 MHz) δ 185.1, 170.3,
167.4, 146.7, 133.8, 132.9, 129.4, 128.4, 128.3, 128.2, 128.1, 126.6, 126.5, 115.3, 108.7, 96.6,
66.5, 52.6, 51.6; IR (KBr) ν 2945, 1692, 1653, 1545, 1315 (cm−1).
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